
-195 152 REDUCING THE PARALLEL SOLUTION TNE OF SPRSE CICUIT
MATRICES USING REOR..(U) MASSACHUSETTS JUST OF TECH
CAMBRIDGE MICROSYSTEMS--RESEARCH CE D SMART ET AL

UNCLASSIFIED MA 88 YLSI-MEMO-88-440 N9@@14-85-K-9825 F/G 9/1i U

MENi

i~rr WN ff

0, 1

.dll1113. n

l "l 1 U i i ,,a
i5 it

.3*

t.?

3,.,,

MASSACHUSETTS INSTITUTE OF TECHNOLOGY VLSI PUBLICATIONS

DTIC
(NLECTEM
Lf) VLSI Memo No. 88-440

March 1988 MAY 13 1988

REDUCING THE PARALLEL SOLUTION TIME OF SPARSE CIRCUIT MATRICES
USING REORDERED GAUSSIAN ELIMINATION AND RELAXATION

David Smart and Jacob White

Abstract
"\ \

Using parallel processors to reduce the execution times of classical circuit simulation
programs like SPICE and ASTAP has been the focus of much current research. In these
efforts, good parallel speed increases have been achieved for linearized system
construction, but it has been difficult to get good parallel speed increases for sparse
matrix solution. In this paper we examine two approaches for reducing parallel sparse
matrix solution time; the first based on pivot ordering algorithms for Gaussian
elimination, and the second based on relaxation algorithms. In the section on Gaussian
elimination sparse matrix solution, we present a pivot ordering algorithm which increases
the parallelism of Gaussian elimination compared to the commonly used Markowitz
method. The performance of the new algorithm is compared to other suggested
ordering algorithms for a collection of circuit examples. The minimum number of parallel
steps for the solution of a tridiagonal matrix is derived, and it is shown that this optimum
is nearly achieved by the ordering heuristics which attempt to maximize parallelism. In
the section on relaxation, we present an optimality result about Gauss-Jacobi over
Gauss-Seidel relaxation on parallel processors.

5 :- '* Appzoved fox public ztfurlor ame,

Massachuse-ts Ca-b,,dge Televhone
Pesea-, le'e- irs. *ute Massachusetts (617) 253-8138R~oor- 39-52, o' T ecrmnologv 021 39 ,

,% - , %~o

S

Rol~~~ ~ ~ ~ - -E q _q .'-r,L, ,, WT% Van-nA -N. t r

ItIN -~~ - -.. . -- °

Acknowledgements

This research was funded in part by Sandia National Laboratory contract number 02-
8522, Semiconductor Research Corporation contract number 86-12-109, and by the
Defense Advanced Research Projects Agency under contract number N00014-87-K-
0825.

Author Information

Smart: Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
1101 West Springfield Avenue, Urbana, IL 61801, (217) 333-4847; White: Department of
Electrical Engineering and Computer Science, MIT, Room 36-880, Cambridge, MA
02139, (617) 253-2543.

CopyrightV 1988 MIT. Memos in this series are for use inside MIT and are not
considered to be published merely by virtue of appearing in this series. This copy is for
private circulation only and may not be further copied or distributed, except for

*government purposes, if the paper acknowledges U. S. Government sponsorship.
References to this work should be either to the published version, if any, or in the form
"private communication." For information about the ideas expressed herein, contact the
author directly. For information about this series, contact Microsystems Research
Center, Room 39-321, MIT, Cambridge, MA 02139; (617) 253-8138.

0'3 '-"'

.2

Reducing the Parallel Solution Time of
Sparse Circuit Matrices Using Reordered

Gaussian Elimination and Relaxation

David Smart
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Jacob White
Dept. of Elec. Eng. and Comp. Sci., M.I.T.

Abstract

Using parallel processors to reduce the execution times of classical circuit sim-
ulation programs like SPICE and ASTAP has been the focus of much current
recearch. In these efforts, good parallel speed increases have been achieved for
linearized system construction, but it has been difficult to get good parallel
speed increases for sparse matrix solution. In this paper we examine two ap-
proaches for reducing parallel sparse matrix solution time: the first based on
pivot ordering algorithms for Gaussian elimination, and the second based on
relaxation algorithms. In the section on Gaussian elimination sparse matrix
solution. we present a pivot ordering algorithm which increases the parallelism
of Gaussian elimination compared to the commonly used Markowitz method.
The performance of the new algorithm is compared to other suggested ordering
algorithms for a collection of circuit examples. The minimum number of par-
allel steps for the solution of a tridiagonal matrix is derived, and it is shown
that this optimum is nearly achieved by the ordering heuristics which attempt
to maximize parallelism. In the section on relaxation, we present an optimality
result about Gauss-Jacobi over Gauss-Seidel relaxation on parallel processors.

1 Introduction

Designers of high performance integrated circuits make extensive use of circuit
-- simulation programs like SPICE and ASTAP [NAG, WEE] in order to tune

their designs before fabrication. These circuit simulation programs often require
hours or days to complete a single simulation because they use computationally

" "expensive, but very reliable, numerical techniques. Since many simulations are

... .

S3.i . A.

performed to design a given integrated circuit, slow simulator turn-around time
can significantly increase overall design time. For this reason, using parallel
processors to reduce the execution times of circuit simulation programs has
been the focus of much current research[COX, JAG].

Programs like SPICE and ASTAP use implicit multistep integration algo-
rithms to convert the differential equation system to a sequence of algebraic
problems, one for each integration timestep. The algebraic problems are solved
using an iterative Newton method, each step of which involves linearizing the
circuit about some guessed solution, and solving the generated sparse linear sys-
tern. Good parallel speed increases have been achieved for the linearized system
construction, but not for the sparse linear system solution.

In this paper we examine two approaches for reducing parallel sparse matrix
solution time: the first, presented in the following section, based on modified
pivot ordering algorithms for Gaussian elimination, and the second, presented

, in section 3, based on relaxation algorithms. Finally, in Section 4, we present
our conclusions and acknowledgements.

0

2 Reordering to Reduce Parallel Solution Time

In this section. the parallel triangularization, or LU factorization, phase of sparse
A matrix solution is investigated. We begin in the next section by describing the

LU factorization algorithm and our computational model. We then present a
modification of the commonly used Markowitz pivot ordering algorithm[MAR]
which reduces the parallel LU factorization time, and compare it with several
other suggested reordering algorithms for a collection of circuit examples. We
then derive the optimum parallel solution for a tridiagonal matrix, and show
that this optimum is nearly achieved for all pivot reordering algorithms, except

Markowitz and some closely related algorithms.

2.1 Parallelism in Sparse Factorization

The solution of Ax = b, where A E Rfxn and x,b E R", by Gaussian elimina-
tion can be accomplished in three steps: Triangularization or LU factorization.
forward elimination, and backward substitution[GOL]. LU factorization is the
most time-consuming of the three, and we will concentrate exclusively on it.
The LU factorization algorithm is, for dense matrices, given by the following
nested loop.

LU Factorization
for k = I to n - I process pinol k

for i = k + 1 ton
=a, a,jk/akk divide

for j= k + 1 to n
aU = aj - askaki update the row entry

h 2

*VY'

14,
Ir•% _W

For a given pivot k in LU factorization, all the divide operations can be done
concurrently, and once they are completed, all the update operations can be

done concurrently. Therefore, for large dense matrices the number of concurrent
divide operations is of order n, and the number of concurrent update operations
is of order n2 at least during the early stages of the algorithm.

Circuit matrices, which are very sparse, have few nonzero entries in their rows
and columns, especially in the early stages of the decomposition, before many
fill-ins are generated. Therefore, concurrent processing of the divides and then
the updates for a single pivot does not provide much parallelism. In order to get
greater degrees of parallelism, different pivots must be processed concurrently.
The extent to which this is possible depends on the matrix structure, which, in
turn, determines the dependencies between operations.

In order to investigate the parallelism available in sparse LU decomposition
we use a task graph model[WIN]. It is assumed that each divide and each update
operation takes one unit of time, and each such operation is represented in the
task graph as one vertex. Dependencies between the operations (e.g. that the

* divide aik = aik/akk must occur before the update ai, = aij - aikakj) are
represented as directed edges. Note that such a graph for a sparse matrix can
only be constructed once the matrix fill-in pattern is known, and therefore the

' -graph topology is a function of the pivot ordering in the LU factorization. The
ordering of update operations also affects the graph topology, since different
pivots can contribute terms to the same update destination, and these update

0 operations must be performed serially,
Based on this task graph model, and the Markowitz pivoting order, it has

been shown that the degree of parallelism for solving circuit matrices can be
as high as 10% of the number of rows in the matrix. This suggests that for

S. large circuits, large speedups may be possible, but for medium-sized problems
additional parallelism must be exploited. Speedups achieved in practice are
also limited by the number of available processors and by overhead due to task
management and communicationsfYAM, COX].

2.2 Pivot Ordering for Improved Parallelism
For uniprocessor applications the goal of a pivot ordering algorithm is to min-
imize the total number of matrix operations, and this is realized by using re-
ordering algorithms that minimize fill-in in the matrix. The commonly used
Markowitz algorithm produces a near-optimal ordering by, at each step of the
elimination, choosing as the next pivot a diagonal entry of the uneliminated
submatrix which has the lowest Markowitz count, defined as the product of the
number of nonzero column entries and nonzero row entries.

For a parallel processor, the goal of an ordering algorithm should be to re-
duce the time to complete the decomposition, and this may not necessarily be
the solution with the fewest number of operations. One approach to measuring
the quality of an ordering algorithm for a parallel processor is to compute the

'4.

3
%%

..- ,.- 5.2 92 * * j.,p,"

q ; Im

length of the longest directed path in the task graph, which is referred to as the
task graph depth. This depth is equal to the minimum number of steps required
to compute the LU decomposition given sufficient processors, and ignoring over-
head factors such as data communications and task scheduling. Several ordering
algorithms [BET, HUA, ZHO] have been proposed which attempt to minimize
the depth of the task graph without significantly increasing the total number
of matrix operations. These algorithms require a method for monitoring the
growth of the task graph depth while choosing pivots to be eliminated.

We propose another ordering algorithm which also attempts to minimize the
task graph depth and keep the total number of operations from increasing much.
The basic idea is that at a step in the elimination process, a set of candidate
diagonal pivots is constructed from those diagonal pivots with low Markowitz
counts. From the set of candidate pivots, a large independent set is extracted.
that is. a set for which if two pivots i and j are in the set ai and aj, are both
zero. All the pivots in an independent set can be processed concurrently with
no conflicts, except that more than one pivot may contribute a term to the same
update destination. The algorithm uses an integer parameter a > 0 which can
be tuned empirically for best performance.

Large Independent Set (LIS) Reordering
Repeat until the elimination is completed

s={}
mcounf= minimum Markowitz count of remaining pivots
For d = mcount to recount + a

For each pivot v of Markowitz count d
If S + v is an independent set then S = S + v

Eliminate using the pivots in the set S, creating fill-ins

The resulting task graph depths for the LIS ordering algorithm and several
other ordering techniques applied to a collection of matrices are given in Ta-
ble 1. Each colunm corresponds to a circuit matrix, except PI000 and P2047
are 1000 node and 2047 node tridiagonal matrices. Note that the minimum
depth/minimum degree[BET] algorithm frequently produces the smallest depth
of the ordering methods, however it tends to significantly increase the total
number of operations, making it less desirable when only a limited number of
processors is available or when overhead factors are taken into account. The
peculiar structure of the ALU circuit produces unusual results. For this circuit
the Markowitz and minimum degree/minimum depth orderings produce exces-
sive fill-ins which are avoided in the other orderings. For the other circuits, the
orderings which try to minimize the task graph depths result in depths up to
about 507(7 less than the Markowitz method.

171

-- - - .r w . - .-.- f fl ~ l - -, --- -- -]- - - -

Table 1. Task graph depths.

PLA OPAMP RAM RAM2 P1000 ALU P2047
m 35 32 66 129 1998 387 4092
a 24 26 45 98 1000 264 2047
b 18 28 30 125 26 25 30
zl 26 29 49 91 1000 52 2047
z2 19 28 36 84 29 27 32
w 23 26 42 79 30 30 33
1 19 28 43 91 27 27 30
w* 19 24 39 75 28 27 31
l* 19 28 42 75 26 26 30o _ 1 23 26

Key: m=Markowitz. a=min degree/min depth[BET], b=min depth/ min de-
gree[BET), zl,z2=Zhou stages 1 and 2[ZHO), w=Wing/Huan- pivot order-
ing[HUA], l=LIS with a=2, *=optimum update ordering [HUAI applied to the

4 pivot ordering. o=globally optimum pivot and update ordering (when it can be
computed).

2.3 The Question of Optimality

Since the heuristic ordering algorithms are not guaranteed to find the globally
minimum depth ordering, we are faced with the question of how close the result-
ing depths are to the minimum possible depth. For a circuit of any significant
size, there are too many possible orderings to try them all. Random searches for
optimum orderings, nested dissection, and simulated annealing did not produce
orderings that were any better than the ones found by the heuristics above.

The quality of the orderings produced by the heuristics can be measured if
analytic techniques can be used to find meaningful lower bounds on the task
graph depth. It is possible to prove a useful result for tridiagonal matrices[SM A].
Tridiagonal matrices are relatively easy to analyze because, regardless of the
pivot order. after the elimination of a pivot the resulting uneliminated portion
of the mat rLx can be reorganized into a tridiagonal matrix of lower order.

Theorem 1 For any d > 0 , the largest n such that the depth of the task graph
associated with a tridiagonal matrix of size n will be less than or equal to d is

given by
Ld/2jJ d-2j2 "d3+ + E F (1)

,=Ld/3J+1 i=0

The minimum possible task graph depths for two tridiagonal matrices were com-
puted based on (1), and these optimum depths are given in Table 1. The small
differences between the optimum results and the results for the LIS algorithm
are due to the fact that LIS tries to choose as many pivots as possible at each

I5

.. 1

stage and does not consider conflicts that will result later in adding terms to

common update locations. The poor performance of the Markowitz and mini-
*. mum degree-based methods for tridiagonal matrices is due to the fact that there

are many pivots which can be processed in parallel but are not selected by the
algorithm because they do not have minimum degree.

aa..

3 Parallel Sparse Matrix Solution by Relax-
%ation

Another approach to solving Az = b is to solve each i11 row equation for zx,
moving the other unknowns to the right hand side by replacing them with
guessed values. The values for the unknowns so approximated can be used to

"'.- 4 improve the guessed values used in each row computation, with the hope of
improving the approximation. This procedure can be repeated, until the ap-
proximations stop improving significantly. Algorithms of this form are referred

* to as relaxation algorithms, and are not commonly used in general circuit simu-
lation programs because the approximations don't always approach the correct
solution. However, when applied to the specific problem of the transient analy-
sis of MOS integrated circuits, relaxation algorithms do converge reliably (with
some "tuning"). In addition, relaxation algorithms are more easily parallelized,

. and this has renewed interest in them[SAL, WHI, DUE].
When constructing a relaxation iterative procedure, one has two choices

about how to update the unknowns. Either one can first solve all the row
equations with some existing set of values for the unknowns, and then replace

- : all the unknowns with the improved approximations; or as one can solve a
particular row and immediately replace the associated unknown before solving
the next row. The element update equation for the former approach, referred
to as Gauss-Jacobi (GJ), can be written compactly as

1[j=i-i 1 ~
.,- k+ =- _ , aj aj = (2

, %'*, 3ki . i - ii E - (2)
~ * j~i+=1

* and the latter approach, referred to as Gauss-Seidel (GS), can be written as

j=i-1 j=n
k. kI (3)
b - b - k+x, - aiV' , (3)X[j=l

, J
where k is the iteration index.

0- When relaxation methods are applied to the matrices associated with the
transient simulation of MOS circuits, GS converges much faster than GJ, be-
cause the GS relaxation can be ordered to follow the strong directionality of
such circuits. In general, one would expect GS to be faster than GJ as each

6%

.:S:

p1.i

I

row solution uses more recent information, and this conclusion is supported by
the Stein-Rosenberg theory(VAR]. Some parallel relaxation-based MOS circuit
simulators use the GS method in an attempt to take advantage of its faster con-
vergence speed[SAL. DUE, WHI]. However, experimental evidence indicates,
that when sufficiently many processors are used, GJ results in faster solutions

0- due to its higher degree of parallelism[SMA2, MAT, WEB].
In the next few sections we show that the empirical evidence about the supe-

riority of GJ on parallel processors is supported by a parallel theory analogous
to the Stein-Rosenberg result. In the next subsection we present a simplified
parallel computation model in order to reexamine the comparison between GS
and GJ. W\e then demonstrate that applied to sparse matrices, GS relaxation has
substantial parallelism. Finally, in the last subsection, we present an optimality
result for GJ over GS on parallel processors.

3.1 A Simplified Parallel Computational Model

The unknown update equations for GJ and GS, Eqns. (2) and (3), involve the
0 same computation: in each case the i~h unknown is updated by summing n - 1

products and a constant. Parallelism can be exploited in this summation, but
it will be the same for both GS and GJ. The difference between GS and GJ
that effects how much total parallelism can be exploited is that in the case of
GJ all the unknowns can be updated simultaneously, and in the case of GS. if

"""> A is full. only one unknown can be updated at a time.
0 In order to more easily examine the difference between the two methods,

we will treat (2) and (3) as atomic operations which can be computed in one
* processor step. In this notation, and assuming sufficiently many processors, one

iteration of GJ takes one step. as all the unknown updates can be performed
simultaneously, and GS takes n steps if A is full, as the ih unknown must be
updated before the i + 1 update equation can be completed.

3.2 Exploiting Sparsity in Parallel GS

It is possible to exploit the sparsity of circuit matrices to increase the parallelism
of GS and reduce the number of steps needed to complete an iteration to well
below n. For example. if ai+ji = 0, then x, can be updated simultaneously with

* x,.. It is easy to calculate exactly how many steps it will take to compute a GS
iteration on a sparse matrix by examining the following graph constructed from
A. Let the graph have n nodes, labeled 1 through n. For each aji : 0, i < j,
place a directed arc from node i to node j in the graph. The result is an acyclic
directed graph. and the depth of this graph is precisely equal to the number of
steps required to complete one iteration of GS on a parallel processor.

* It is also possible to exploit more parallelism in the GS algorithm by begin-
fning the k + 1th iteration before completing the kf h . For example, if aj, through
a,, are all zero. then one can compute without waiting for z through

7

.,

. -.'.

"-0'

. ,.,..,,.

0

to be computed first. Combining this technique of overlapping iterations with
simultaneously updating independent zi 's , as mentioned above, yields a paral-

Ru. lel GS algorithm which is best characterized by the average number of processor
steps between GS iteration completions. We will refer to this number of steps
as r. It should be noted that r depends only on the nonzero structure of A
and for general sparse matrices r can be much less than n. For example, if A

./' is tridiagonal, r = 2. With this in mind, the winner in a comparison between
-- GJ and GS on parallel processors is less clear, and is the subject of the next

section.

3.3 The Optimality of Parallel GJ over GS
In order to compare the GJ and GS procedures, we will consider their asymptotic
convergence properties. In particular, let A = L + D + U where L, D, and U
are strictly lower triangular, diagonal, and strictly upper triangular matrices.
respectively. Define the GJ and GS iteration matrices MaGj = -D-(L+U) and

0 MAGS = -(L+D)-'U. It is well known that the asymptotic rates of convergence
of GJ and GS are related to p(AIGJ) and p(MGs) respectively[VAR], where p
denotes spectral radius. Since m iterations of parallel GJ require m steps and
.n iterations of parallel GS require r m steps, in the limit as m - oo. it follows
that parallel GJ is asymptotically faster than parallel GS if p(MGc)j is less than
p(MAGs). For a large class of matrices it can be proved that this is the case,
and therefore parallel GJ is asymptotically faster than parallel GS. The
result is precisely stated in the following theorem:

Theorem 2 If the elements of MGj are nonnegative, and p(MGJ) < 1, then
p(Maj p(MAGS).

Examining nonnegative convergent iteration matrices follows the Stein-Rosenberg
approach to the GS/GJ comparison[VAR]. It is also true that the matrices as-
sociated with the transient simulation of MOS circuits, if the discretization
timestep is small[WHI], satisfy the conditions of the theorem, which suggests
the comparison plays a direct role in practice.

The proof of Theorem 2 utilizes the following lemma[GAN] and definition

. Lemma 1 Perron-Frobenius: If matrix M E W... is nonnegative, then it has a
nonnegatrue real eigenvalue equal to its spectral radius and a nonnegative eigen-
-ector associated with that eigenvalue.

"PGS1

Definition 1 Define XzPGJ, x E R' to be the vectors of most recently up-
dated elements produced by 1 processor steps of parallel GJ and GS algorithm5

'0 respecti ely.

.p~

10
" % 77)

%

Since a GJ iteration finishes in one processor step, x P
G

J
I x' , the i h iterate

of a GJ iteration, and therefore

XPGJL+i b+ z - xPGJ (4)
1a,, a,, j

3' j ',j=t

In general. rPGsz never corresponds to any ? iterate of GS, because overlap-
ping of the iterations implies that the elements of z most recently updated can
correspond to different iterations. And because of data dependencies inherent
in the GS algorithm, many of the elements of zPGSI are the same as those of
XPGSl+i . Therefore. each GS update will be given by either

xPGSI+1 zPGS1 5=i X (5)

or

aPGS+1 a± X a-PGSm(j) (6)
i h a,, aij

where rn(j) E {O,....1). Note that m(j) is used to indicate that in order to
follow the GS update formula, it may be necessary to pick out elements from
several different, but earlier, xPGSm(j

) vectors.
In order to complete the proof, we now consider solving Ax = 0 by relaxation.

where .4 is such that 'fGj exists and is nonnegative and p(MGJ) < 1. Let the
initial guess x = X PGSo = xPGJO be a nonnegative eigenvector associated with
a nonnegative eigenvalue of .Mfj equal to p(MGJ). Since MGJ is nonnegative,
a,) /a,, < 0 for all i : j. Consequently, since xO is nonnegative and b = 0, each
term in (4) and (6) is nonnegative for all i,l. Also, since x' is an eigenvector
associated with an eigenvalue equal to p(MAGj) < 1, xPGJI = p(MGJ)'xZ and

Ptherefore xGJI decays monotonically with I for all i.
Suppose P(MGJ) > p(MAs), then in the limit as I - 0 the nonnegative

vector xPG5s will be less than x P GJ I. We will show by induction that this can
not happen. and this will complete the proof. First, assume zPGJI < z'PGs m

for all i and all rn E {O ... , I}. This assumption clearly holds for 1 = 0, thus
forming the basis of the induction. In those cases where (5) applies. xPGSt+i =

,GSa PG > xPGJI+i because >PGnL is monotone decreasing
in 1. In those cases where (6) applies, each term of the summation in (4)
is less than or equal to the corresponding term in (6) and all the terms are
nonnegative. HnexPS+ GIl

PngI e. Hence zPs+i >_ 'JJ+ . Since xf a s
' decreases monotonically.

XrG . +r < XrG'2 < zPGsm for all m < 1. Consequently, X PGJI+l < XPGSt

for all i and all rn E { I + 1). thus completing the induction and the proof.

* 4 Conclusions and Acknowledgements

Matrix reordering heuristics for parallel processing have been shown to be effec-
tive in reducing the depth of the LU factorization task graph. However, for most

P.

9

I? °
-•' -

.
_% .,.-%

0

S"

M,,..-,

of the circuit examples investigated the improvement in depth was less than 50%
and the benefit of this improvement is only realizable on a large number of

processors. One reason for this is that the Markowitz algorithm which was used
as the basis for comparison tends to produce small task graph depths simply
by keeping the total number of operations small. For certain matrix structures,
the heuristics which attempt to maximize parallelism produce vastly superior
results. such as for tridiagonal matrices. In the examples that were considered,
the LIS algorithm consistently produced good orderings.

In the examination of relaxation methods we proved a result that indicates
on a parallel processor GJ relaxation is almost certainly superior to GS, almost
regardless of the numerical character of the problem. The result, we think, is

%. also interesting because it associates the spectral radius of a matrix -o some of
its graphical. rather than numerical, properties. For example, Theorem 2 leads

.- to the somewhat surprising conclusion that if a tridiagonal matrix satisfies the
conditions of the theorem, then the the spectral radius of its associated GS
iteration matrix is no less than half the spectral radius of its associated GJ

* iteration matrix.
The authors would like to acknowledge the many valuable discussions with A.

Sangiovanni-Vincentelli, Tim Trick, Don Webber, Res Saleh. Vish Visvanathan.
and Vasant Rao. In addition, we would like to mention the paper by Chazan and
Miranker[CHA], from which some of the ideas for the analysis were derived. This
research was funded in part by Sandia National Laboratory contract 02-8522. ,
Semiconductor Research Corporation contract 86-12-109, and by the Defense

*.. Advanced Research Projects Agency under contract N00014-87-K-0825.

* ., References

' [BET] R. Betancourt. "Efficient parallel proressing technique for inverting ma-
trices with random sparsity," lEE Proc., pp. 235-240, July 1986.

jCtA D Chazan. V. Miranker, "Chaotic Relaxation," Linear Algebra and
Its Applications, vol. 2, pp. 199-222, 1969.

[COX] P. Cox. R. Burch. B Epler. "Circuit Partitioning for Parallel Process-
ing." IEEE Int. Conf on Computer-Aided Design, pp. 186-189, Nov.

* 1986.

[DEU] J T. Deutsch. A. R. Newton, "MSPLICE: A Multiprocessor-Based
Circuit Simulator." Int. Conf Parallel Processing, pp, 207-214, May.

[AN' F R. Gantmacher, Applications of the Theory of Matrices. lnterscience
0 Publishers, 1959.

[GOL] G. Golub, C. F. Van Loan, Matiz Computations, The Johns Hopkins
University Press, Baltimore. Maryland, 1983.

% rk

10

0

%. % o

V-.-: ::::}:.-:

I-.

[HUA] J. W. Huang, 0. Wing, "Optimal Parallel Triangulation of a Sparse Ma-
trix," IEEE Tr'ans. on Circuits and Systems, pp. 726-732, Sept. 1979.

[J AC] G. Jacobs, D. Pederson, "An Empirical Analysis of the Performance
of a Multiprocessor-based Circuit Simulator," Proc. of the Design Au-
tomation Conference, Las Vegas, Nevada, June 1986.

[MIARIlH. N1. Markowitz, "The Elimination Form of the Inverse and Its Ap-
plication to Linear Programming," Management Science, pp. 225-269,
1957.

[%IAT] S. Mattisson, "CONCISE A Concurrent Circuit Simulation Program,"
Doctoral dissertation, Dept. of Appl. Electronics, Univ. of Lund, Swe-
den, Aug. 1986.

[NAG,' L. \V. Nagel, "SPICE2: A Computer Program to Simulate Sem-icon-
ductor Circuits." Electronics Research Lab Report, ERL M520, Univ.
of Calif., Berkeley'. May 1975.

[SAL] R. A. Salehi. D. W\ebber, E. Xia and A. Sangiovanni- Vincentelli. "Par-
allel Waveform Newton Algorithrms for Circuit Simulnti-,n." IEEE Int.
Conf. Computer Design: VLSI in Computers and Pi,- --... r, pp. 660-

"-' . 663. Oct.. 1987.

[,S" ISA]l D. Smart, "Parallelism in Direct Method Circuit Simulation," Research

- Report RC-13399, IBM Watson Research Center, Yorktown Heights,
New York, 1988.

[SNIA2) D. Smart. T. Trick. "Increasing Parallelism in Multiprocessor Wave-
form Relaxation." IEEE Int. Conf on Computer-Aided Dcsign. pp.
360-363. Nov. 1987.

IVARI R. Varga. Yalrix lffrafirf Analysis. Prentice Hall, Englewood Clifft..
New Jersey, 1962.

IWEB] D. M. Webber, A. Sangiovanni-Vincentelli, "Circuit Simulation on the
Connection Machine." 24th ACMf/IEEE Design Automation Con f, pp.
108-113, June 1987.

'WE E W. T. Weeks, A. J. Jimenez, G. W. Mahoney, D. Mehta, H.
Quasemnzadeh, T. R. Scott, "Algorithms for ASTAP - A Network Anal-
ysis Program." IEEE Trans. on Circuit Theory, pp. 628-634, Nov. 1973.

ANV1II] J. K. White, A. Sangiowdrnni-Vincentelli, Relaxation Techniques for thf
Simulation of V'LSI Circuits, Kluwer Pub., Boston, 1986.

[NVIN] 0. Wing, J. W. Huang. "A Computation Model of Parallel Solution
of Linear Equations," IEEE Trans. on Computers, pp. 632-638, Jul%
1980.

,NO.%"

0

[YAM] F. Yamamoto, S. Takahashi, "Vectorized LU Decomposition Algorithms
for Large-Scale Circuit Simulation," IEEE Trans. on Computer-Aided
Design, pp. 232-239, July 1985.

[ZHO] V. Zhou, "Optimal Parallel Triangulation of a Sparse Matrix- A Graph-
ical Approach", IEEE Int. Symp. Circuits and Systems, pp. 624-627,

• ,,:19 1.

N

121
N

" .l..-'

N-

N 4-°Nll
N .,

, . .,

$
*1

• e

N

2

-p.%

b

?00,,

Z~FE

